首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10203篇
  免费   1119篇
  国内免费   2219篇
  2023年   160篇
  2022年   191篇
  2021年   284篇
  2020年   395篇
  2019年   451篇
  2018年   454篇
  2017年   441篇
  2016年   462篇
  2015年   417篇
  2014年   462篇
  2013年   724篇
  2012年   411篇
  2011年   482篇
  2010年   382篇
  2009年   581篇
  2008年   519篇
  2007年   554篇
  2006年   543篇
  2005年   518篇
  2004年   470篇
  2003年   417篇
  2002年   400篇
  2001年   347篇
  2000年   298篇
  1999年   286篇
  1998年   237篇
  1997年   256篇
  1996年   247篇
  1995年   216篇
  1994年   195篇
  1993年   184篇
  1992年   201篇
  1991年   142篇
  1990年   161篇
  1989年   140篇
  1988年   123篇
  1987年   119篇
  1986年   94篇
  1985年   117篇
  1984年   85篇
  1983年   53篇
  1982年   111篇
  1981年   68篇
  1980年   45篇
  1979年   32篇
  1978年   21篇
  1977年   12篇
  1976年   6篇
  1975年   8篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Dickson Fenn 《FEBS letters》2008,582(30):4169-4175
Oxidation of guanine in DNA can lead to mutagenic lesions such as 7-hydro-8-oxoguanine (oG). Upon further oxidation, a more mutagenic lesion, spirominodihydantoin (Sp), can occur. In this study, nuclear magnetic resonance (NMR) investigations were performed to determine the structural features of DNA primer-template models with 5′-GG, 5′-G(oG), 5′-G(Sp) and 5′-T(Sp) templates, that mimic the situation in which the downstream G of the template has been oxidized to oG or hyperoxidized to Sp. Our results show that misalignment occurs only in the 5′-G(Sp) and 5′-T(Sp) templates, providing structural insights into the observed differences in mutagenicity of Sp and oG during DNA replication.  相似文献   
82.
Cell membrane stability (CMS) in suspension cultures of two groundnut cultivars was studied under polyethylene glycol(PEG)-induced water stress. There was a negative relationship between PEG concentration in the medium and membrane stability measured as electrolyte leakage. The CMS values in the cell cultures correlated well with the whole plant tissue and permitted the differentiation of cultivars based on their known response to drought stress. The cell membrane stability was lower (more electrolyte leakage) when cells were grown in culture as compared to the intact plant tissue. Kadiri-3, the drought tolerant cultivar maintained higher CMS than JL-24, the drought susceptible one. With increasing PEG levels the concentration of Potassium in cultured cells declined in both cultivars. However, Kadiri-3 maintained higher K values than JL-24 accompanied with greater cell membrane stability. Total soluble sugars also increased with increasing stress in both cultivars; the increase being higher in Kadiri-3. There was no significant change in the total free amino acids but proline accumulated markedly in both varieties. However, no relationship was found between proline levels and CMS. The results demonstrated that CMS test can also be used under in vitro conditions to differentiate the drought tolerant and susceptible cultivars and the cellular K level has a positive relationship with membrane stability.  相似文献   
83.
Stem water storage capacity and hydraulic capacitance (CS) play a crucial role in tree survival under drought-stress. To investigate whether CS adjusts to increasing water deficit, variation in stem water content (StWC) was monitored in vivo for 2 years and related to periodical measurements of tree water potential in Mediterranean Quercus ilex trees subjected either to permanent throughfall exclusion (TE) or to control conditions. Seasonal reductions in StWC were larger in TE trees relative to control ones, resulting in greater seasonal CS (154 and 80 kg m−3 MPa−1, respectively), but only during the first phase of the desorption curve, when predawn water potential was above −1.1 MPa. Below this point, CS decreased substantially and did not differ between treatments (<20 kg m−3 MPa−1). The allometric relationship between tree diameter and sapwood area, measured via electrical resistivity tomography, was not affected by TE. Our results suggest that (a) CS response to water deficit in the drought-tolerant Q. ilex might be more important to optimize carbon gain during well-hydrated periods than to prevent drought-induced embolism formation during severe drought stress, and (b) enhanced CS during early summer does not result from proportional increases in sapwood volume, but mostly from increased elastic water.  相似文献   
84.
Chinese water deer is a rare and vulnerable animal in China because of the poaching for medical use and the habitat loss. In this study, the genetic diversity and population genetic structure of 40 Chinese water deer from three populations in Zhoushan Archipelago were investigated with ten highly polymorphic microsatellite loci, including 4 screened from the nuclear DNA in the study, and 6 selected from the literature. According to the results, these captive populations had a higher genetic diversity than other rare cervid species, such as forest musk deer. No signs of inbreeding were detected. Low genetic differentiation among these populations was found. The probable reasons included the isolation by distance, the exchange among islands, or the supplement of the wild Chinese water deer. We proposed the deer raisers to strengthen the exchanges from different islands or mainland, and if possible, some deer would be returned to the wild to expand the wild population.  相似文献   
85.
Electrical impedance measurements made on white spruce, Picea glauca (Moench) Voss, stems were related to shoot free sugar contents and to osmotic, turgor and water potential. During seasonal dormancy induction, there were commensurate increases in free sugar contents, osmotic potential at full turgor and impedance which resulted in linear relationships among these variables. When measured over the course of laboratory drying, impedance increased curvilinearly with decreasing relative water content. There was a linear increase in impedance with decreasing water potential, with a break point coincident with the turgor loss point, possibly attributed to disruption to current flow through broken plasmodesmatal connections between adjacent cells. This technique offers a non-destructive method to measure tissue free sugar content, and therefore, short- and long-term shifts in parameters historically derived from pressure-volume analysis.  相似文献   
86.
Tuan A. Ho 《Molecular simulation》2014,40(14):1190-1200
In this work, different water models (i.e. SPC/E, TIP3P, TIP4P/2005, TIP5P, SPC/Fw, TIP4P/2005f and SWM4_DP) are implemented to simulate water on neutral, negatively charged and positively charged graphene. In all cases ambient conditions are considered. Structural and dynamical properties for water are calculated to quantify the differences among various water models. The results show that SPC/E, TIP4P/2005, SPC/Fw, TIP4P/2005f and SWM4_DP water models yield a similar structure for interfacial water on graphene, whether it is neutral, negatively charged or positively charged. TIP5P is the model whose predictions for the structure of the interface deviate the most from those of the other models. Although qualitatively the results are for the most part similar, a large quantitative variation is observed among the dynamical properties predicted when various water models are implemented. Although experimental data are not available to discriminate the most/least accurate of the model predictions, our results could be useful for comparing results for interfacial water obtained implementing different models. Such critical comparison will benefit practical applications such as the development of energy-storage and water-desalination devices (e.g. electric double-layer capacitors), among others.  相似文献   
87.
A hypothesis is presented that the availability of water for export of nitrogenous products from legume nodules is a major factor limiting the efficiency of symbiotic nitrogen fixation. Water for export of solutes in the xylem probably depends largely on the import of water and reduced carbon in the phloeum, and one function of respiration may be to dispose of reduced carbon in order to increase the supply of water. A second hypothesis presented is that control of gas diffusion in soybean nodules is largely restricted to the cortex nearby the vascular bundles, thus making possible the linkage of solute balances in xylem and phloem with resistance to diffusion. These concepts are used in a re-examination of literature on manipulations of nodules and nodulated plants such as lowering of light levels, water stress, defoliation, stem girdling, and alteration of oxygen supply. The concept of translocation as a major factor limiting efficiency of symbiotic fixation is consistent with the failure of superior rhizobial isolates to improve N input significantly, and this limitation could also prevent exploitation of superior bacterial symbionts in the future  相似文献   
88.
We describe here an integration of hydraulic and chemical signals which control stomatal conductance of plants in drying soil, and suggest that such a system is more likely than control based on chemical signals or water relations alone. The determination of xylem [ABA] and the stomatal response to xylem [ABA] are likely to involve the water flux through the plant. (1) If, as seems likely, the production of a chemical message depends on the root water status (Ψr), it will not depend solely on the soil water potential (Ψs) but also on the flux of water through the soil-plant-atmosphere continuum, to which are linked the difference between Ψr and Ψs. (2) The water flux will also dilute the concentration of the message in the xylem sap. (3) The stomatal sensitivity to the message is increased as leaf water potential falls. Stomatal conductance, which controls the water flux, therefore would be controlled by a water-flux-dependent message, with a water-flux-dependent sensitivity. In such a system, we have to consider a common regulation for stomatal conductance, leaf and root water potentials, water flux and concentration of ABA in the xylem. In order to test this possibility, we have combined equations which describe the generation and effects of chemical signals and classical equations of water flux. When the simulation was run for a variety of conditions, the solution suggested that such common regulation can operate. Simulations suggest that, as well as providing control of stomatal conductance, integration of chemical and hydraulic signalling may also provide a control of leaf water potential and of xylem [ABA], features which are apparent from our experimental data. We conclude that the root message would provide the plant with a means to sense the conditions of water extraction (soil water status and resisance to water flux) on a daily timescale, while the short-term plant response to this message would depend on the evaporative demand.  相似文献   
89.
The inhibition of water diffusion across the rat erythrocyte membrane was studied by NMR using two basically different types of inhibitory agents: PCMB andin vivo irradiation. The contribution of lipid and protein to water permeability revealed the inhibitory effect of each pathway. Internal contamination with tritium (25–115 mGy) reduces water permeability due to protein modifications; for doses higher than 100 mGy the lipid mediated mechanism seems also to be impaired. The same procedure enables one to assess the extent to which the higher water permeability of rat, compared to human, erythrocyte is due to one of the two pathways.  相似文献   
90.
A field lysimeter study was established with the aim of investigating the effect of nitrogen availability upon drought strain in Norway spruce trees. Forest soil (Typic Udipsamment) was filled in lysimeters 1 m in diameter and 1 m deep. Small trees of Norway spruce from five different clones were planted in the lysimeters. Roofs under the canopy of the trees ensured full control of water and nutrient input. Three levels of nitrogen were given to the trees during five years; ambient rainwater, and five and fifteen times this N concentration, respectively. Additional N was given as NH4NO3 in irrigation water. Mean annual N-addition during the five years corresponded to 5, 27 and 82 kg per ha and year for the three treatments, respectively. During the third and fifth growth season drought was artificially induced. In addition to a watered control, two levels of drought were applied, representing water deprivation for 2 and 3 months, respectively, in 1990 and 3 and 4 months, respectively in 1992. A higher water consumption in the nitrogen fertilized trees during the droughts resulted in a significantly lower pre-dawn shoot water potential compared to the trees receiving ambient rain N. The interaction between drought and nitrogen fertilization was clear also for photosynthesis and transpiration. A decrease in height- and diameter increment caused by drought was most pronounced in the 82 kg N ha–1 yr–1 treatment. A water strain integral showed a strong positive correlation to the needle biomass of the trees. Foliar concentrations of several nutrients decreased significantly with increasing drought strain in the trees. Concentration of potassium and boron were especially low and visual symptoms of deficiency occurred.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号